Source code for mwptoolkit.model.Seq2Tree.berttd

import copy
from typing import Dict, Any, Tuple

from mwptoolkit.module.Encoder.transformer_encoder import BertEncoder
from mwptoolkit.module.Layer.tree_layers import *
from mwptoolkit.module.Strategy.beam_search import TreeBeam
from mwptoolkit.loss.masked_cross_entropy_loss import MaskedCrossEntropyLoss, masked_cross_entropy
from mwptoolkit.utils.utils import copy_list
from mwptoolkit.utils.enum_type import NumMask, SpecialTokens


[docs]class BertTD(nn.Module): """ Reference: Li et al. Seeking Patterns, Not just Memorizing Procedures: Contrastive Learning for Solving Math Word Problems """ def __init__(self, config, dataset): super(BertTD, self).__init__() self.hidden_size = config["hidden_size"] self.device = config["device"] self.USE_CUDA = True if self.device == torch.device('cuda') else False self.beam_size = config['beam_size'] self.max_out_len = config['max_output_len'] self.embedding_size = config["embedding_size"] self.dropout_ratio = config["dropout_ratio"] self.num_layers = config["num_layers"] self.rnn_cell_type = config["rnn_cell_type"] self.embedding = config['embedding'] self.pretrained_model_path = config['pretrained_model'] if config['pretrained_model'] else config[ 'transformers_pretrained_model'] self.add_num_symbol = config['add_num_symbol'] self.vocab_size = len(dataset.in_idx2word) self.out_symbol2idx = dataset.out_symbol2idx self.out_idx2symbol = dataset.out_idx2symbol generate_list = dataset.generate_list self.generate_nums = [self.out_symbol2idx[symbol] for symbol in generate_list] self.mask_list = NumMask.number self.num_start = dataset.num_start self.operator_nums = dataset.operator_nums self.generate_size = len(generate_list) self.unk_token = self.out_symbol2idx[SpecialTokens.UNK_TOKEN] try: self.out_sos_token = self.out_symbol2idx[SpecialTokens.SOS_TOKEN] except: self.out_sos_token = None try: self.out_eos_token = self.out_symbol2idx[SpecialTokens.EOS_TOKEN] except: self.out_eos_token = None try: self.out_pad_token = self.out_symbol2idx[SpecialTokens.PAD_TOKEN] except: self.out_pad_token = None try: self.in_pad_token = dataset.in_word2idx[SpecialTokens.PAD_TOKEN] except: self.in_pad_token = None self.encoder = BertEncoder(self.hidden_size, self.dropout_ratio, self.pretrained_model_path) if self.add_num_symbol: self._pretrained_model_resize() self.decoder = Prediction(self.hidden_size, self.operator_nums, self.generate_size, self.dropout_ratio) self.node_generater = GenerateNode(self.hidden_size, self.operator_nums, self.embedding_size, self.dropout_ratio) self.merge = Merge(self.hidden_size, self.embedding_size, self.dropout_ratio) self.loss = MaskedCrossEntropyLoss() def _pretrained_model_resize(self): self.encoder.token_resize(self.vocab_size)
[docs] def forward(self, seq, seq_length, nums_stack, num_size, num_pos, target=None, output_all_layers=False) -> Tuple[ torch.Tensor, torch.Tensor, Dict[str, Any]]: """ :param torch.Tensor seq: input sequence, shape: [batch_size, seq_length]. :param torch.Tensor seq_length: the length of sequence, shape: [batch_size]. :param list nums_stack: different positions of the same number, length:[batch_size] :param list num_size: number of numbers of input sequence, length:[batch_size]. :param list num_pos: number positions of input sequence, length:[batch_size]. :param torch.Tensor | None target: target, shape: [batch_size, target_length], default None. :param bool output_all_layers: return output of all layers if output_all_layers is True, default False. :return : token_logits:[batch_size, output_length, output_size], symbol_outputs:[batch_size,output_length], model_all_outputs. :rtype: tuple(torch.Tensor, torch.Tensor, dict) """ # sequence mask for attention encoder_seq_mask = seq != self.in_pad_token decoder_seq_mask = torch.eq(seq, self.in_pad_token).to(self.device) num_mask = [] max_num_size = max(num_size) + len(self.generate_nums) for i in num_size: d = i + len(self.generate_nums) num_mask.append([0] * d + [1] * (max_num_size - d)) num_mask = torch.BoolTensor(num_mask).to(self.device) batch_size = len(seq_length) problem_output, encoder_outputs, encoder_layer_outputs = self.encoder_forward(seq, encoder_seq_mask, output_all_layers) copy_num_len = [len(_) for _ in num_pos] max_num_size = max(copy_num_len) all_nums_encoder_outputs = self.get_all_number_encoder_outputs(encoder_outputs, num_pos, batch_size, max_num_size, self.hidden_size) token_logits, symbol_outputs, decoder_layer_outputs = self.decoder_forward(encoder_outputs, problem_output, all_nums_encoder_outputs, nums_stack, decoder_seq_mask, num_mask, target, output_all_layers) model_all_outputs = {} if output_all_layers: model_all_outputs.update(encoder_layer_outputs) model_all_outputs['number_representation'] = all_nums_encoder_outputs model_all_outputs.update(decoder_layer_outputs) return token_logits, symbol_outputs, model_all_outputs
[docs] def calculate_loss(self, batch_data: dict) -> float: """Finish forward-propagating, calculating loss and back-propagation. :param batch_data: one batch data. :return: loss value. batch_data should include keywords 'question', 'ques len', 'equation', 'equ len', 'num stack', 'num size', 'num pos' """ seq = torch.tensor(batch_data["question"]).to(self.device) seq_length = torch.tensor(batch_data["ques len"]).long() target = torch.tensor(batch_data["equation"]).to(self.device) target_length = torch.tensor(batch_data["equ len"]).to(self.device) nums_stack = copy.deepcopy(batch_data["num stack"]) num_size = batch_data["num size"] num_pos = batch_data["num pos"] token_logits, _, all_layer_outputs = self.forward(seq, seq_length, nums_stack, num_size, num_pos, target, output_all_layers=True) target = all_layer_outputs['target'] loss = masked_cross_entropy(token_logits, target, target_length) loss.backward() return loss.item()
[docs] def model_test(self, batch_data: dict) -> tuple: """Model test. :param batch_data: one batch data. :return: predicted equation, target equation. batch_data should include keywords 'question', 'ques len', 'equation', 'num stack', 'num pos', 'num list' """ seq = torch.tensor(batch_data["question"]).to(self.device) seq_length = torch.tensor(batch_data["ques len"]).long() target = torch.tensor(batch_data["equation"]).to(self.device) nums_stack = copy.deepcopy(batch_data["num stack"]) num_pos = batch_data["num pos"] num_list = batch_data['num list'] num_size = batch_data['num size'] _, outputs, _ = self.forward(seq, seq_length, nums_stack, num_size, num_pos) all_output = self.convert_idx2symbol(outputs[0], num_list[0], copy_list(nums_stack[0])) targets = self.convert_idx2symbol(target[0], num_list[0], copy_list(nums_stack[0])) return all_output, targets
[docs] def predict(self, batch_data: dict, output_all_layers=False): """ predict samples without target. :param dict batch_data: one batch data. :param bool output_all_layers: return all layer outputs of model. :return: token_logits, symbol_outputs, all_layer_outputs """ seq = torch.tensor(batch_data["question"]).to(self.device) seq_length = torch.tensor(batch_data["ques len"]).long() nums_stack = copy.deepcopy(batch_data["num stack"]) num_size = batch_data["num size"] num_pos = batch_data["num pos"] token_logits, symbol_outputs, model_all_outputs = self.forward(seq, seq_length, nums_stack, num_size, num_pos, output_all_layers=output_all_layers) return token_logits, symbol_outputs, model_all_outputs
[docs] def encoder_forward(self, seq, seq_mask, output_all_layers=False): encoder_outputs = self.encoder(seq, seq_mask) problem_output = encoder_outputs[0] all_layer_outputs = {} if output_all_layers: all_layer_outputs['encoder_outputs'] = encoder_outputs all_layer_outputs['inputs_representation'] = problem_output return problem_output, encoder_outputs, all_layer_outputs
[docs] def decoder_forward(self, encoder_outputs, problem_output, all_nums_encoder_outputs, nums_stack, seq_mask, num_mask, target=None, output_all_layers=False): batch_size = problem_output.size(0) node_stacks = [[TreeNode(_)] for _ in problem_output.split(1, dim=0)] padding_hidden = torch.FloatTensor([0.0 for _ in range(self.hidden_size)]).unsqueeze(0).to(self.device) embeddings_stacks = [[] for _ in range(batch_size)] left_childs = [None for _ in range(batch_size)] token_logits = [] outputs = [] if target is not None: target = target.transpose(0, 1) max_target_length = target.size(0) for t in range(max_target_length): num_score, op_score, current_embeddings, current_context, current_nums_embeddings = self.decoder( node_stacks, left_childs, encoder_outputs, all_nums_encoder_outputs, padding_hidden, seq_mask, num_mask) # all_leafs.append(p_leaf) token_logit = torch.cat((op_score, num_score), 1) output = torch.topk(token_logit, 1, dim=-1)[1] token_logits.append(token_logit) outputs.append(output) target_t, generate_input = self.generate_tree_input(target[t].tolist(), token_logit, nums_stack, self.num_start, self.unk_token) target[t] = target_t if self.USE_CUDA: generate_input = generate_input.cuda() left_child, right_child, node_label = self.node_generater(current_embeddings, generate_input, current_context) left_childs = [] for idx, l, r, node_stack, i, o in zip(range(batch_size), left_child.split(1), right_child.split(1), node_stacks, target[t].tolist(), embeddings_stacks): if len(node_stack) != 0: node = node_stack.pop() else: left_childs.append(None) continue if i < self.num_start: node_stack.append(TreeNode(r)) node_stack.append(TreeNode(l, left_flag=True)) o.append(TreeEmbedding(node_label[idx].unsqueeze(0), False)) else: current_num = current_nums_embeddings[idx, i - self.num_start].unsqueeze(0) while len(o) > 0 and o[-1].terminal: sub_stree = o.pop() op = o.pop() current_num = self.merge(op.embedding, sub_stree.embedding, current_num) o.append(TreeEmbedding(current_num, True)) if len(o) > 0 and o[-1].terminal: left_childs.append(o[-1].embedding) else: left_childs.append(None) target = target.transpose(0, 1) else: beams = [TreeBeam(0.0, node_stacks, embeddings_stacks, left_childs, [], [])] max_gen_len = self.max_out_len for t in range(max_gen_len): current_beams = [] while len(beams) > 0: b = beams.pop() if len(b.node_stack[0]) == 0: current_beams.append(b) continue left_childs = b.left_childs num_score, op_score, current_embeddings, current_context, current_nums_embeddings = self.decoder( b.node_stack, left_childs, encoder_outputs, all_nums_encoder_outputs, padding_hidden, seq_mask, num_mask) token_logit = torch.cat((op_score, num_score), 1) out_score = nn.functional.log_softmax(token_logit, dim=1) # out_score = p_leaf * out_score topv, topi = out_score.topk(self.beam_size) for tv, ti in zip(topv.split(1, dim=1), topi.split(1, dim=1)): current_node_stack = copy_list(b.node_stack) current_left_childs = [] current_embeddings_stacks = copy_list(b.embedding_stack) current_out = [tl for tl in b.out] current_token_logit = [tl for tl in b.token_logit] current_token_logit.append(token_logit) out_token = int(ti) current_out.append(torch.squeeze(ti, dim=1)) node = current_node_stack[0].pop() if out_token < self.num_start: generate_input = torch.LongTensor([out_token]) if self.USE_CUDA: generate_input = generate_input.cuda() left_child, right_child, node_label = self.node_generater(current_embeddings, generate_input, current_context) current_node_stack[0].append(TreeNode(right_child)) current_node_stack[0].append(TreeNode(left_child, left_flag=True)) current_embeddings_stacks[0].append(TreeEmbedding(node_label[0].unsqueeze(0), False)) else: current_num = current_nums_embeddings[0, out_token - self.num_start].unsqueeze(0) while len(current_embeddings_stacks[0]) > 0 and current_embeddings_stacks[0][-1].terminal: sub_stree = current_embeddings_stacks[0].pop() op = current_embeddings_stacks[0].pop() current_num = self.merge(op.embedding, sub_stree.embedding, current_num) current_embeddings_stacks[0].append(TreeEmbedding(current_num, True)) if len(current_embeddings_stacks[0]) > 0 and current_embeddings_stacks[0][-1].terminal: current_left_childs.append(current_embeddings_stacks[0][-1].embedding) else: current_left_childs.append(None) current_beams.append( TreeBeam(b.score + float(tv), current_node_stack, current_embeddings_stacks, current_left_childs, current_out, current_token_logit)) beams = sorted(current_beams, key=lambda x: x.score, reverse=True) beams = beams[:self.beam_size] flag = True for b in beams: if len(b.node_stack[0]) != 0: flag = False if flag: break token_logits = beams[0].token_logit outputs = beams[0].out token_logits = torch.stack(token_logits, dim=1) # B x S x N outputs = torch.stack(outputs, dim=1) # B x S all_layer_outputs = {} if output_all_layers: all_layer_outputs['token_logits'] = token_logits all_layer_outputs['outputs'] = outputs all_layer_outputs['target'] = target return token_logits, outputs, all_layer_outputs
[docs] def get_all_number_encoder_outputs(self, encoder_outputs, num_pos, batch_size, num_size, hidden_size): indices = list() sen_len = encoder_outputs.size(0) masked_index = [] temp_1 = [1 for _ in range(hidden_size)] temp_0 = [0 for _ in range(hidden_size)] for b in range(batch_size): for i in num_pos[b]: indices.append(i + b * sen_len) masked_index.append(temp_0) indices += [0 for _ in range(len(num_pos[b]), num_size)] masked_index += [temp_1 for _ in range(len(num_pos[b]), num_size)] indices = torch.LongTensor(indices) masked_index = torch.BoolTensor(masked_index) masked_index = masked_index.view(batch_size, num_size, hidden_size) if self.USE_CUDA: indices = indices.cuda() masked_index = masked_index.cuda() all_outputs = encoder_outputs.transpose(0, 1).contiguous() all_embedding = all_outputs.view(-1, encoder_outputs.size(2)) # S x B x H -> (B x S) x H all_num = all_embedding.index_select(0, indices) all_num = all_num.view(batch_size, num_size, hidden_size) return all_num.masked_fill_(masked_index, 0.0)
[docs] def generate_tree_input(self, target, decoder_output, nums_stack_batch, num_start, unk): # when the decoder input is copied num but the num has two pos, chose the max target_input = copy.deepcopy(target) for i in range(len(target)): if target[i] == unk: num_stack = nums_stack_batch[i].pop() max_score = -float("1e12") for num in num_stack: if decoder_output[i, num_start + num] > max_score: target[i] = num + num_start max_score = decoder_output[i, num_start + num] if target_input[i] >= num_start: target_input[i] = 0 return torch.LongTensor(target), torch.LongTensor(target_input)
[docs] def convert_idx2symbol(self, output, num_list, num_stack): # batch_size=output.size(0) '''batch_size=1''' seq_len = len(output) num_len = len(num_list) output_list = [] res = [] for s_i in range(seq_len): idx = output[s_i] if idx in [self.out_sos_token, self.out_eos_token, self.out_pad_token]: break symbol = self.out_idx2symbol[idx] if "NUM" in symbol: num_idx = self.mask_list.index(symbol) if num_idx >= num_len: res = [] break res.append(num_list[num_idx]) elif symbol == SpecialTokens.UNK_TOKEN: try: pos_list = num_stack.pop() c = num_list[pos_list[0]] res.append(c) except: return None else: res.append(symbol) output_list.append(res) return output_list
# def train_tree(self, input_batch, input_length, target_batch, target_length, nums_stack_batch, num_size_batch, # generate_nums, num_pos, unk, num_start, english=False): # # sequence mask for attention # seq_mask = [] # max_len = max(input_length) # for i in input_length: # seq_mask.append([0 for _ in range(i)] + [1 for _ in range(i, max_len)]) # seq_mask = torch.BoolTensor(seq_mask) # # num_mask = [] # max_num_size = max(num_size_batch) + len(generate_nums) # for i in num_size_batch: # d = i + len(generate_nums) # num_mask.append([0] * d + [1] * (max_num_size - d)) # num_mask = torch.BoolTensor(num_mask) # # # Turn padded arrays into (batch_size x max_len) tensors, transpose into (max_len x batch_size) # # input_var = input_batch.transpose(0, 1) # # target = target_batch.transpose(0, 1) # # padding_hidden = torch.FloatTensor([0.0 for _ in range(self.hidden_size)]).unsqueeze(0) # batch_size = len(input_length) # # if self.USE_CUDA: # seq_mask = seq_mask.cuda() # padding_hidden = padding_hidden.cuda() # num_mask = num_mask.cuda() # encoder_outputs = self.encoder(input_batch,1 - seq_mask.to(torch.long)) # problem_output = encoder_outputs[0] # # Prepare input and output variables # node_stacks = [[TreeNode(_)] for _ in problem_output.split(1, dim=0)] # # max_target_length = max(target_length) # # all_node_outputs = [] # # all_leafs = [] # # copy_num_len = [len(_) for _ in num_pos] # num_size = max(copy_num_len) # all_nums_encoder_outputs = self.get_all_number_encoder_outputs(encoder_outputs, num_pos, batch_size, num_size, # self.hidden_size) # # embeddings_stacks = [[] for _ in range(batch_size)] # left_childs = [None for _ in range(batch_size)] # for t in range(max_target_length): # num_score, op, current_embeddings, current_context, current_nums_embeddings = self.decoder(node_stacks, # left_childs, # encoder_outputs, # all_nums_encoder_outputs, # padding_hidden, # seq_mask, # num_mask) # # # all_leafs.append(p_leaf) # outputs = torch.cat((op, num_score), 1) # all_node_outputs.append(outputs) # # target_t, generate_input = self.generate_tree_input(target[t].tolist(), outputs, nums_stack_batch, # num_start, unk) # target[t] = target_t # if self.USE_CUDA: # generate_input = generate_input.cuda() # left_child, right_child, node_label = self.node_generater(current_embeddings, generate_input, # current_context) # left_childs = [] # for idx, l, r, node_stack, i, o in zip(range(batch_size), left_child.split(1), right_child.split(1), # node_stacks, target[t].tolist(), embeddings_stacks): # if len(node_stack) != 0: # node = node_stack.pop() # else: # left_childs.append(None) # continue # # if i < num_start: # node_stack.append(TreeNode(r)) # node_stack.append(TreeNode(l, left_flag=True)) # o.append(TreeEmbedding(node_label[idx].unsqueeze(0), False)) # else: # current_num = current_nums_embeddings[idx, i - num_start].unsqueeze(0) # while len(o) > 0 and o[-1].terminal: # sub_stree = o.pop() # op = o.pop() # current_num = self.merge(op.embedding, sub_stree.embedding, current_num) # o.append(TreeEmbedding(current_num, True)) # if len(o) > 0 and o[-1].terminal: # left_childs.append(o[-1].embedding) # else: # left_childs.append(None) # # # all_leafs = torch.stack(all_leafs, dim=1) # B x S x 2 # all_node_outputs = torch.stack(all_node_outputs, dim=1) # B x S x N # # target = target.transpose(0, 1).contiguous() # if self.USE_CUDA: # # all_leafs = all_leafs.cuda() # all_node_outputs = all_node_outputs.cuda() # target = target.cuda() # target_length = torch.LongTensor(target_length).cuda() # else: # target_length = torch.LongTensor(target_length) # # loss = masked_cross_entropy(all_node_outputs, target, target_length) # loss.backward() # # return loss.item() # , loss_0.item(), loss_1.item() # # def evaluate_tree(self, input_batch, input_length, generate_nums, num_pos, num_start, beam_size=5, max_length=30): # # seq_mask = torch.BoolTensor(1, input_length).fill_(0) # # Turn padded arrays into (batch_size x max_len) tensors, transpose into (max_len x batch_size) # input_var = input_batch.transpose(0, 1) # # num_mask = torch.BoolTensor(1, len(num_pos[0]) + len(generate_nums)).fill_(0) # # padding_hidden = torch.FloatTensor([0.0 for _ in range(self.hidden_size)]).unsqueeze(0) # # batch_size = 1 # # if self.USE_CUDA: # input_var = input_var.cuda() # seq_mask = seq_mask.cuda() # padding_hidden = padding_hidden.cuda() # num_mask = num_mask.cuda() # # Run words through encoder # encoder_outputs = self.encoder(input_batch,1 - seq_mask.to(torch.long)) # problem_output = encoder_outputs[0] # # # Prepare input and output variables # node_stacks = [[TreeNode(_)] for _ in problem_output.split(1, dim=0)] # # num_size = len(num_pos[0]) # all_nums_encoder_outputs = self.get_all_number_encoder_outputs(encoder_outputs, num_pos, batch_size, num_size, # self.hidden_size) # # B x P x N # embeddings_stacks = [[] for _ in range(batch_size)] # left_childs = [None for _ in range(batch_size)] # # beams = [TreeBeam(0.0, node_stacks, embeddings_stacks, left_childs, [])] # # for t in range(max_length): # current_beams = [] # while len(beams) > 0: # b = beams.pop() # if len(b.node_stack[0]) == 0: # current_beams.append(b) # continue # # left_childs = torch.stack(b.left_childs) # left_childs = b.left_childs # # num_score, op, current_embeddings, current_context, current_nums_embeddings = self.decoder(b.node_stack, # left_childs, # encoder_outputs, # all_nums_encoder_outputs, # padding_hidden, # seq_mask, # num_mask) # # out_score = nn.functional.log_softmax(torch.cat((op, num_score), dim=1), dim=1) # # # out_score = p_leaf * out_score # # topv, topi = out_score.topk(beam_size) # # for tv, ti in zip(topv.split(1, dim=1), topi.split(1, dim=1)): # current_node_stack = copy_list(b.node_stack) # current_left_childs = [] # current_embeddings_stacks = copy_list(b.embedding_stack) # current_out = copy.deepcopy(b.out) # # out_token = int(ti) # current_out.append(out_token) # # node = current_node_stack[0].pop() # # if out_token < num_start: # generate_input = torch.LongTensor([out_token]) # if self.USE_CUDA: # generate_input = generate_input.cuda() # left_child, right_child, node_label = self.node_generater(current_embeddings, generate_input, # current_context) # # current_node_stack[0].append(TreeNode(right_child)) # current_node_stack[0].append(TreeNode(left_child, left_flag=True)) # # current_embeddings_stacks[0].append(TreeEmbedding(node_label[0].unsqueeze(0), False)) # else: # current_num = current_nums_embeddings[0, out_token - num_start].unsqueeze(0) # # while len(current_embeddings_stacks[0]) > 0 and current_embeddings_stacks[0][-1].terminal: # sub_stree = current_embeddings_stacks[0].pop() # op = current_embeddings_stacks[0].pop() # current_num = self.merge(op.embedding, sub_stree.embedding, current_num) # current_embeddings_stacks[0].append(TreeEmbedding(current_num, True)) # if len(current_embeddings_stacks[0]) > 0 and current_embeddings_stacks[0][-1].terminal: # current_left_childs.append(current_embeddings_stacks[0][-1].embedding) # else: # current_left_childs.append(None) # current_beams.append(TreeBeam(b.score + float(tv), current_node_stack, current_embeddings_stacks, # current_left_childs, current_out)) # beams = sorted(current_beams, key=lambda x: x.score, reverse=True) # beams = beams[:beam_size] # flag = True # for b in beams: # if len(b.node_stack[0]) != 0: # flag = False # if flag: # break # # return beams[0].out